Music Network Visualization

Note: probably of interest only to the intersection of the readers who are into niche music genres and those interested in network visualization.

My music interests have always been rather, hmm…, eclectic. Somehow IDM, ambient, darkwave, triphop, acid jazz, bossa nova, qawali, Mali blues and other more or less obscure genres have managed to happily co-exist in my music collection. The sheer diversity always invited the question whether there is some structure to the collection, or each genre is an island of its own. Sounds like a job for network visualization!

Now, there are plenty of music network viz applications on the web. But they don’t show my collection, and just seem unsatisfactory for various reasons. So I decided to craft my own visualization using R and igraph.

As a first step I collected for all artists in my last.fm library the artists that the site classifies as similar. So I piggyback on last.fm for the network similarity measures. I also get info on the most-often used tag for the artist and the number of plays it has on the site. The rest is pretty straightforward as can be seen from the code.

# Load the igraph and foreign packages (install if needed)
require(igraph)
require(foreign)
lastfm<-read.csv("http://www.dimiter.eu/Data_files/lastfm_network_ad.csv", header=T,  encoding="UTF-8") #Load the dataset

lastfm$include<-ifelse(lastfm$Similar %in% lastfm$Artist==T,1,0) #Index the links between artists in the library
lastfm.network<-graph.data.frame(lastfm, directed=F) #Import as a graph

last.attr<-lastfm[-which(duplicated(lastfm$Artist)),c(5,3,4) ] #Create some attributes
V(lastfm.network)[1:106]$listeners<-last.attr[,2]
V(lastfm.network)[107:length(V(lastfm.network))]$listeners<-NA
V(lastfm.network)[1:106]$tag<-last.attr[,3]
V(lastfm.network)[107:length(V(lastfm.network))]$tag<-NA #Attach the attributes to the artist from the library (only)
V(lastfm.network)$label.cex$tag<-ifelse(V(lastfm.network)$listeners>1200000, 1.4, 
                                    (ifelse(V(lastfm.network)$listeners>500000, 1.2,
                                            (ifelse(V(lastfm.network)$listeners>100000, 1.1,
                                                   (ifelse(V(lastfm.network)$listeners>50000, 1, 0.8))))))) #Scale the size of labels by the relative popularity

V(lastfm.network)$color<-"white" #Set the color of the dots
V(lastfm.network)$size<-0.1 #Set the size of the dots
V(lastfm.network)$label.color<-NA
V(lastfm.network)[1:106]$label.color<-"white" #Only the artists from the library should be in white, the rest are not needed

E(lastfm.network)[ include==0 ]$color<-"black" 
E(lastfm.network)[ include==1 ]$color<-"red" #Color edges between artists in the library red, the rest are not needed

fix(tkplot) #Add manually to the function an argument for the background color of the canvas and set it to black (bg=black)

tkplot(lastfm.network, vertex.label=V(lastfm.network)$name, layout=layout.fruchterman.reingold,
       canvas.width=1200, canvas.height=800) #Plot the graph and adjust as needed

I plot the network with the tkplot command which allows for the manual adjustments necessary because many artist names get on top of each other in the initial plot. Because the export options of tkplot are limited I just took a print screen ( I know, I know, that’s kind of cheating ;-)), added the tittle in Photoshop and, voila, it’s done!

[click to enlarge and explore]
my-music-netowrk

Knowing intimately the artists in the graph, I can certify that the network definitely makes a lot of sense. I love the small clusters (Flying Louts, Andy Stott, Extrawelt and Claro Intelecto [minimal/dub], or Anouar Brahem and Rabih Abou-Khalil [ethno jazz]) loosely connected to the rest of the network. And I love the fact that the boundary spanners are immediately obvious (e.g. Pink Martini between acid jazz and world music [what a stupid label by the way!], or Cesaria Evora between African and Caribbean music, or Portishead between brit-pop, trip-hop and darkwave, or Amon Tobin between trip-hop, electro and IDM). Even the different world music genres are close to each other but still unconnected. And somehow Banco De Gaya, the most ethno of all electronica in the library, ended up closest to the world/ethno clusters. There are a few problems, like Depeche Mode, which get to be pulled from the opposite sides of the graph, but these are very few.

Altogether, I have to admit I feel like a teenage dream of mine has finally been realized. But I realize the network is a rather personal thing (as it was meant to be) so I don’t expect many to get overly excited about it. Still, I would be glad to hear your comments or suggestions for extensions and improvements. And, if you were a good boy/girl during the year, I could also consider visualizing your last.fm network as a present for the new year!

Network visualization in R with the igraph package

In this post I showed a visualization of the organizational network of my department. Since several people asked for details how the plot has been produced, I will provide the code and some extensions below. The plot has been done entirely in R (2.14.01) with the help of the igraph package. It is a great package but I found the documentation somewhat difficult to use, so hopefully this post can be a helpful introduction to network visualization with R. Here we go:

# Load the igraph package (install if needed)

require(igraph)

# Data format. The data is in 'edges' format meaning that each row records a relationship (edge) between two people (vertices).
# Additional attributes can be included. Here is an example:
#	Supervisor	Examiner	Grade	Spec(ialization)
#	AA		BD		6	X	
#	BD		CA		8	Y
#	AA		DE		7	Y
#	...		...		...	...
# In this anonymized example, we have data on co-supervision with additional information about grades and specialization. 
# It is also possible to have the data in a matrix form (see the igraph documentation for details)

# Load the data. The data needs to be loaded as a table first: 

bsk<-read.table("http://www.dimiter.eu/Data_files/edgesdata3.txt", sep='\t', dec=',', header=T)#specify the path, separator(tab, comma, ...), decimal point symbol, etc.

# Transform the table into the required graph format:
bsk.network<-graph.data.frame(bsk, directed=F) #the 'directed' attribute specifies whether the edges are directed
# or equivelent irrespective of the position (1st vs 2nd column). For directed graphs use 'directed=T'

# Inspect the data:

V(bsk.network) #prints the list of vertices (people)
E(bsk.network) #prints the list of edges (relationships)
degree(bsk.network) #print the number of edges per vertex (relationships per people)

# First try. We can plot the graph right away but the results will usually be unsatisfactory:
plot(bsk.network)

Here is the result:

Not very informative indeed. Let’s go on:

 
#Subset the data. If we want to exclude people who are in the network only tangentially (participate in one or two relationships only)
# we can exclude the by subsetting the graph on the basis of the 'degree':

bad.vs<-V(bsk.network)[degree(bsk.network)<3] #identify those vertices part of less than three edges
bsk.network<-delete.vertices(bsk.network, bad.vs) #exclude them from the graph

# Plot the data.Some details about the graph can be specified in advance.
# For example we can separate some vertices (people) by color:

V(bsk.network)$color<-ifelse(V(bsk.network)$name=='CA', 'blue', 'red') #useful for highlighting certain people. Works by matching the name attribute of the vertex to the one specified in the 'ifelse' expression

# We can also color the connecting edges differently depending on the 'grade': 

E(bsk.network)$color<-ifelse(E(bsk.network)$grade==9, "red", "grey")

# or depending on the different specialization ('spec'):

E(bsk.network)$color<-ifelse(E(bsk.network)$spec=='X', "red", ifelse(E(bsk.network)$spec=='Y', "blue", "grey"))

# Note: the example uses nested ifelse expressions which is in general a bad idea but does the job in this case
# Additional attributes like size can be further specified in an analogous manner, either in advance or when the plot function is called:

V(bsk.network)$size<-degree(bsk.network)/10#here the size of the vertices is specified by the degree of the vertex, so that people supervising more have get proportionally bigger dots. Getting the right scale gets some playing around with the parameters of the scale function (from the 'base' package)

# Note that if the same attribute is specified beforehand and inside the function, the former will be overridden.
# And finally the plot itself:
par(mai=c(0,0,1,0)) 			#this specifies the size of the margins. the default settings leave too much free space on all sides (if no axes are printed)
plot(bsk.network,				#the graph to be plotted
layout=layout.fruchterman.reingold,	# the layout method. see the igraph documentation for details
main='Organizational network example',	#specifies the title
vertex.label.dist=0.5,			#puts the name labels slightly off the dots
vertex.frame.color='blue', 		#the color of the border of the dots 
vertex.label.color='black',		#the color of the name labels
vertex.label.font=2,			#the font of the name labels
vertex.label=V(bsk.network)$name,		#specifies the lables of the vertices. in this case the 'name' attribute is used
vertex.label.cex=1			#specifies the size of the font of the labels. can also be made to vary
)

# Save and export the plot. The plot can be copied as a metafile to the clipboard, or it can be saved as a pdf or png (and other formats).
# For example, we can save it as a png:
png(filename="org_network.png", height=800, width=600) #call the png writer
#run the plot
dev.off() #dont forget to close the device
#And that's the end for now.

Here is the result:

Still not perfect, but much more informative and aesthetically pleasing.

Additional information can be found on this guide to igraph which is in development, the examples here, and the official CRAN documentation of the package. Especially useful is this list of the plot attributes that can be tweaked. The plots can also be adjusted interactively using the tkplot function instead of plot, but the options for saving the resulting figure are limited.

Have fun with your networks!